Весь сайт
Chinese
English
Mongolian
Для слабовидящих

Программа вступительных испытаний по математике

Настоящая программа состоит из двух частей.

В первой части приводятся разделы программы школьного курса математики, которые необходимо знать для успешной сдачи письменного вступительного экзамена.

В второй части указано, какие навыки и умения требуются от поступающего.

I. Программа по математике

1. Алгебра.

1.1. Натуральные числа (N). Простые и составные числа. Наибольший общий делитель и наименьшее общее кратное.

1.2. Целые (Z), рациональные (Q) числа, их сложение, вычитание, умножение и деление. Сравнение рациональных чисел.

Действительные числа (R), их представление в виде десятичных дробей. Проценты. Модуль действительного числа. Степень с целым и рациональным показателем, их свойства. Арифметический корень.

1.3. Логарифмы. Их свойства. Логарифм произведения, частного, степени.

1.4. Числовые и буквенные выражения. Равенства и тождества. Преобразование выражений. Формулы сокращенного умножения.

1.5. Радианная и градусная мера угла. Основные тригонометрические тождества. Синус, косинус и тангенс суммы и разности двух аргументов (формулы). Тригонометрические функции двойного и половинного аргумента. Формулы приведения. Преобразование в произведение сумм тригонометрических функций и обратно.

2. Уравнения и неравенства .

2.1. Равносильность уравнений и неравенств. Корни уравнений.

2.2. Квадратные уравнения. Разложение квадратного трехчлена на линейные множители, теорема Виета.

2.3. Квадратные неравенства. Рациональные неравенства. Метод интервалов.

2.4. Уравнения и неравенства с модулем.

2.5. Иррациональные уравнения и неравенства.

2.6. Тригонометрические уравнения и неравенства.

2.7. Показательные уравнения и неравенства.

2.8. Логарифмические уравнения и неравенства.

2.9. Системы уравнений с двумя неизвестными.

3. Функции.

3.1. Функции. Способы задания функции. Область ее определения, множество значений функции.

3.2. График функции. Возрастание, убывание, периодичность, четность, нечетность. Точки экстремума функции. Наибольшее и наименьшее значения функции на промежутке.

3.3. Основные элементарные функции и их свойства.
Линейная функция, ее график. Квадратичная функция, степенная функция с натуральным показателем, их графики. Показательная, логарифмическая функции, их графики. Тригонометрические функции, их графики. Функция арифметического корня.

4. Начала математического анализа

4.1. Понятие производной, ее геометрический и физический смысл.

4.2. Производные основных элементарных функций.

4.3. Применение производных к исследованию функций и построению графиков.

5. Элементы геометрии.

5.1. Треугольник. Медиана, биссектриса, высота.

5.2. Квадрат, прямоугольник, параллелограмм, ромб, трапеция.

5.3. Окружность и круг. Радиус, хорда, диаметр, секущая.

5.4. Цилиндр, конус, шар, сфера.

Величина угла. Длина отрезка, окружности и дуги окружности. Площадь многоугольника, круга и кругового сектора. Площадь поверхности и объем цилиндра, конуса, шара.

II. Требования к поступающему

На экзамене по математике поступающий должен уметь:

1. выполнять (без калькулятора) действия над числами и числовыми выражениями; преобразовывать буквенные выражения; переводить одни единицы измерения величин в другие;
2. сравнивать числа и находить их приближенные значения (без калькулятора); доказывать тождества и неравенства для буквенных выражений;

3.решать уравнения, неравенства, системы уравнений;

4. исследовать функции; строить графики функций и множества точек на координатной плоскости, заданные уравнениями;

5. пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения, величины углов, длины, площади, объемы;
6. составлять уравнения, неравенства и находить значения величин, исходя из условия задачи;
7. излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.

III . Инструкция по выполнению работы

На выполнение экзаменационной работы по математике дается 3.55 часа (235 мин). Работа состоит из трех частей и содержит 26 заданий.

Часть 1 содержит 13 заданий (А1 – А10 и В1 – В3) обязательного уровня по материалу курса «Алгебра и начала анализа» 10-11 классов. К каждому заданию А1 – А10 приведены 4 варианта ответа, из которых только один верный. При выполнении этих заданий надо указать номер верного ответа. К заданиям В1 – В3 надо дать краткий ответ. Каждое правильное решение оценивается в 3 балла.

Часть 2 содержит 10 более сложных заданий (В4 – В11, С1, С2) по материалу курса «Алгебра и начала анализа» 10-11 классов, а также различных разделов курсов алгебры и геометрии основной и средней школы. К заданиям В4 – В11 надо дать краткий ответ, к заданиям С1 и С2 – записать решение. Каждое правильное решение оценивается в 4 балла.

Часть 3 содержит 3 самых сложных задания, два – алгебраических (С3, С5) и одно – геометрическое (С4). При их выполнении надо записать обоснованное решение. Максимальная оценка за каждое задание – 7 баллов.

Тестовый балл выставляется по 100-балльной шкале на основе баллов, полученных за выполнение всех заданий работы.

Советуем для экономии времени пропускать задание, которое не удается выполнить сразу, и переходить к следующему. К выполнению пропущенных заданий можно вернуться, если у вас останется время.